Discriminant linear processing o
نویسنده
چکیده
Extending previous works done on considerably smaller data sets, the paper studies linear discriminant analysis of about 30 hours of phoneme-labeled speech data in the time-frequency domain. Analysis is carried both independently in time and frequency and jointly. Data driven spectral basis show similar frequency sensitivity as human hearing. LDA-derived temporal FIR filters are consistent with temporal lateral inhibition. Considerable improvement is obtained using first temporal discriminant.
منابع مشابه
E cient leave-one-out cross-validation of kernel Fisher discriminant classi'ers
Mika et al. (in: Neural Network for Signal Processing, Vol. IX, IEEE Press, New York, 1999; pp. 41–48) apply the “kernel trick” to obtain a non-linear variant of Fisher’s linear discriminant analysis method, demonstrating state-of-the-art performance on a range of benchmark data sets. We show that leave-one-out cross-validation of kernel Fisher discriminant classi'ers can be implemented with a ...
متن کاملA Multi Linear Discriminant Analysis Method Using a Subtraction Criteria
Linear dimension reduction has been used in different application such as image processing and pattern recognition. All these data folds the original data to vectors and project them to an small dimensions. But in some applications such we may face with data that are not vectors such as image data. Folding the multidimensional data to vectors causes curse of dimensionality and mixed the differe...
متن کاملOptimally regularised kernel Fisher discriminant classification
Mika, Rätsch, Weston, Schölkopf and Müller [Mika, S., Rätsch, G., Weston, J., Schölkopf, B., & Müller, K.-R. (1999). Fisher discriminant analysis with kernels. In Neural networks for signal processing: Vol. IX (pp. 41-48). New York: IEEE Press] introduce a non-linear formulation of Fisher's linear discriminant, based on the now familiar "kernel trick", demonstrating state-of-the-art performance...
متن کاملAdaptive Learning Rate for Online Linear Discriminant Classifiers
We propose a strategy for updating the learning rate parameter of online linear classifiers for streaming data with concept drift. The change in the learning rate is guided by the change in a running estimate of the classification error. In addition, we propose an online version of the standard linear discriminant classifier (O-LDC) in which the inverse of the common covariance matrix is update...
متن کاملEfficient Stochastic Methods: Profiled Attacks Beyond 8 Bits
Template attacks and stochastic models are among the most powerful side-channel attacks. However, they can be computationally expensive when processing a large number of samples. Various compression techniques have been used very successfully to reduce the data dimensionality prior to applying template attacks, most notably Principal Component Analysis (PCA) and Fisher’s Linear Discriminant Ana...
متن کامل